ABSTRACT

Introduction: Thymoquinone is one of the phytochemicals used as chemopreventive agents for oral cancer control. TQ loaded on nanoparticles had shown higher anti-proliferative and anti-inflammatory effects than free TQ. Natural products that can inhibit Cyclooxygenase-2 (COX-2) would be a better choice in the prevention of tumor development with fewer side effects than pharmaceutical agents.

Objective: To study the expression of Cox-2 in HBP/DMBA carcinogenesis model following combined topical application of TQ loaded on gold nanoparticles on alternative days.

Material and Methods: This research was carried out on archival paraffin blocks of a previous thesis. The paraffin blocks represented hamster buccal pouches (HBPs) from 85 male Syrian golden hamsters were divided into 2 groups. The control groups included: I: negative control group, scarified at day zero then after 7 and 14 weeks, and II: positive control, treated with 7, 12-Dimethyl benz[a]-anthracene (DMBA) for 7 and 14 weeks. The experimental groups included: (III, IV and V) which were treated with the chemopreventive agents for 2 weeks then combined DMBA and the chemopreventive agents on alternative days for 7 and 14 weeks. Sections of 5µm were cut and processed for H&E and IHC stains for light microscopic study.

Results: Negative and self-control groups showed negative COX-2 immunoreactivity. Group II showed intense Cox-2 immunoreactivity at both 7 and 14 weeks. Groups; III and IV showed moderate and intense Cox-2 immunoreactivity at 7 and 14 weeks, respectively. Group V showed mild and moderate Cox-2 staining reaction at 7 and 14 weeks, respectively.

Conclusion: Topical application of G-NPs-TQ (0.001) for 7 and 14 weeks was able to reduce Cox-2 expression and in turn retard the carcinogenesis process due to its anti-inflammatory effect.

Keywords: Thymoquinone, Gold-nanoparticles, Oral squamous cell carcinoma, Cyclooxygenase-2, and Dimethylbenz-(a) anthracene.

INTRODUCTION

Oral cancer (OC) is the sixth common human cancer worldwide. Oral squamous cell carcinoma (OSCC) represents 90% of OC and may be preceded by epithelial dysplasia. Egypt has been found to have high incidence rate of OC and every year about 4,500 patients are diagnosed with OSCC and half of them will die of the disease (1). Extensive use of tobacco, betel quid and alcohol consumption are recognized as the major risk factors of OC (2).

One of the most important approaches for cancer control is chemoprevention. Phytochemicals have been shown to have important chemopreventive effects with a good safety profile (3). Thymoquinone (TQ), which is the major active constituent of Nigella sativa Linnaeus (NS.L), is one of these phytochemicals. TQ exhibits effective antioxidant, anti-inflammatory, anti-cancer, anti-microbial, and immunomodulatory effects (4). TQ was found to inhibit 5-lipoxygenase products during inflammation and enhance free radical scavenging activity (antioxidative effect) (5). The main limitations for the use of TQ in humans are its poor bioavailability and the lack of knowledge about its toxicity in humans (6). TQ loaded on nanoparticles (NPs) has shown higher anti-proliferative, anti-inflammatory and chemosensitizing effects than free TQ. As G-NPs are smaller in size than proteins, they can selectively disturb and modify cellular processes, i.e. as intrinsic drug agents. G-NPs of about 1 nm diameter are able to cross the cell membrane and nucleus to interact with DNA (7). G-NPs were used as a cancer drug delivery, cell-specific targeting.
and controlled drug release. They also have the ability to bind to various molecules which make them potential candidates for chemical and biological applications with non-cytotoxic effect to normal cells (8).

Cyclooxygenase, a known prostaglandin-endoperoxide synthase (PTGS), is the key enzyme in prostaglandin biosynthesis and acts both as a dioxygenase and a peroxidase (9). Three isoforms of COX have been identified: COX-1, COX-2, and COX-3, where COX-2 is the most important regulator in response to inflammation and many types of cancers. COX-2 overexpression is known to be associated with inhibition of apoptosis, immune surveillance, promotion of angiogenesis, and increase of cancer invasiveness and metastasis (10). It was found that COX-2 expression in oral precancerous and cancerous lesions has increased from ED to SCCs with the elevation of cell proliferating activity. Patients with overexpression of COX-2 have poor prognosis and their overall 5-year survival rate was decreased (11). Selective COX-2 inhibitors or antisense RNA have resulted in the suppression of tumor growth and invasion in vitro, as well as the prevention of OC caused by chemical carcinogens in animal models (12). The overexpression of NF-κB and COX-2 was reported in several tumors including OC. COX-2 is one of the downstream targets of NF-κB. There are two NF-κB sites on the 5-flanking region of COX-2 gene (13). NS and TQ were found to be able to suppress the expression of COX-2 in the pancreatic tissue of streptozotocin (STZ)-induced diabetic rats (14). COX-2-inhibitors could be used at the premalignant stage for the prevention of OC through topical application or oral administration (15).

MATERIAL AND METHODS

The study was carried out on archival paraffin blocks of (a previous thesis by Shata et al.) which compared the effect of different TQ preparations as chemopreventive agents on the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the HBP/DMBA experimental model (16). The paraffin blocks represented buccal pouches from 85 male Syrian golden hamsters (Mesocricetus auratus)* which weighed 100-120 grams. (*The animals were purchased from Tnador Blhars Research Institute, Cairo, Egypt.). The DMBA (cat. no: D3254) was dissolved in heavy mineral oil (cat.No: M 3516) to get 0.5% solution. Both were purchased from Sigma Chemical Company, St. Louis, Mo, USA.

The blocks were divided into 2 groups: A: Control groups and B: Experimental groups. The control groups included I and II: I: negative control group (15 animals), sacrificed at day zero then after 7 and 14 weeks (5 animals each). II: positive control (10 animals) painted topically with DMBA on left pouches 3 times / week for 7 and 14 weeks (5 animals each). The experimental groups included III, IV and V (10 animals each) which were treated with the chemopreventive agents. The group III was painted daily and topically with TQ (0.001mg/kg) for 2 weeks then with both TQ (0.001mg/kg) and DMBA on alternative days for 7 and 14 weeks. The group IV was painted daily and topically with G-NPs for 2 weeks then with both G-NPs and DMBA as group III. The group V was painted daily and topically with TQ (0.001mg/kg) loaded on G-NPs for 2 weeks then with both TQ (0.001mg/kg) loaded on G-NPs and DMBA as group III.

All pouches were surgically excised, fixed in 10% neutral formalin, and embedded in soft paraffin wax. Sections of 5µm were cut and processed for H& E and IHC stains for light microscopic study. The slides were diagnosed by two pathologists and photographed by Olympus E-330 Evolt Digital Photography camera attached to an Image Analyzing System (Olympus BX50 Microscope). The oral epithelial dysplasia (OED) was graded, according to El-Dakakhkhy et al. (2009) modified from Banocy and Csiba (1976), into: Mild: when an average of less than 3 dysplastic criteria was found (for each group); Moderate: when an average of 3-7 criteria was found (for each group) Severe: when an average of more than 7 or more criteria was found (for each group); and Carcinoma in situ: when the criteria were distributed from top to bottom with intact basement membrane (17,18). The SCCs were classified, according to WHO (1977), into well, moderate, and poorly differentiated (19).

Immunohistochemical (IHC) stain for detection of Cox-2 expression was conducted following the manufacturer’s instructions using Cox-2 antibody (rabbit polyclonal antibody) Cat #RB-9072-R7 (Thermo Fisher Scientific, Anatomical Pathology, UK). Staining was detected using Ultra vision detection system (cat. No. TP-015-HD). Three high-power fields were selected from each slide and at least 70 epithelial cells were evaluated and considered positive when the nuclei and/or the cytoplasm were stained. The semi-quantitative method was used to determine the intensity of immunohistochemical stain using the recent version of ImageJ software with IHC profiler plugin (1.48 version) (NIH, Bethesda, Maryland) (Java 1.8.9_66). The IHC-profiler generates IHC analysis using color deconvolution and and computerized pixel profiling leading to automated scoring of the respective image. The final score is shown in semi-quantitative way (high positive, positive, low positive or negative). This semi-quantitative scoring method was classified into four categories: negative =0, low positive =1, positive =2 and high positive =3 according to the intensity of staining (20).

The mean percentage of stained cells was classified into 4 categories as follows: (0) No detectable immunostaining or basal immunostaining<10% cells, (+1) Mild immunostaining when 10–30% cells are positively stained, (+2) Moderate immunostaining when 30–50% cells are positively stained, and (+3) Intense immunostaining when>50% of the cells showed positive staining (21).
Statistical analysis: the Software Statistical Package for Social Sciences (SPSS) (version 12.0) was used. The mean percentage of stained cells was analyzed using Mann-Whitney test. The mean difference is significant at \(p \leq 0.05 \) level.

RESULTS

For the negative control group (group I), the righ and left pouches showed normal appearing HBP mucosa and negative Cox-2 immunoreactivity (score 0) and negative intensity of IHC stain (score 0) (Figure 1).

![Figure 1: Photomicrograph of the negative control group (group I) at 7 and 14 weeks, shows no detectable Cox-2 immunostaining (score 0) as the hamster buccal pouch mucosa was normal (IHC ×40).](image)

On the other hand, the positive control group (group II) showed severe dysplasia at 7 weeks, well to moderate SCC at 14 weeks, and intense Cox-2 immunoreactivity in all cases (score +3) and high positive intensity of stain (score 3) (Figures 2 and 3).

![Figure 2: Photomicrograph of the positive control group (group II), shows squamous cell carcinoma where connective tissue was invaded with keratin pearls and dysplastic epithelial nests (H&E × 40).](image)

Animals treated with TQ 0.001/DMBA (group III) showed moderate dysplasia with moderate Cox-2 immunoreactivity at 7 weeks (score +2) with positive intensity of stain (score 2), while at 14 weeks, they showed CIS and superficial invasion with intense Cox-2 reaction (score +3) and positive intensity of stain (score 2). Hamsters treated with G-NPs and DMBA (group IV) showed moderate to severe dysplasia (at 7 weeks), and moderate Cox-2 stain (score +2) with positive intensity of stain (score 2), while at 14 weeks, they showed CIS and superficial invasion with intense COX-2 stain (score +3) and high positive intensity of stain (score 3) (Figure 4).

![Figure 4: Photomicrograph of group III (TQ 0.001 /DMBA) and group IV (G-NPs/DMBA) at 7 weeks, shows moderate Cox-2 immunostaining limited to the lower 2/3 of epithelium (score +2) (IHC × 40).](image)

The best results were obtained from group V (G-NPs-TQ 0.001 and DMBA) which showed mild dysplasia with mild Cox-2 stain at 7 weeks (score +1) with low positive intensity of stain (score 1), while at 14 weeks, they showed mild to moderate dysplasia with moderate COX-2 staining reaction (score +2) and positive intensity of stain (score 2) (Figure 5).

![Figure 5: Photomicrograph of group V (G-NPs-TQ 0.001 and DMBA) at 14 weeks, shows mild Cox-2 staining reaction (score +2) and positive intensity of stain (score 2).](image)
Figure 5: Photomicrograph of group V (G-NPs-TQ 0.001 / DMBA 7 weeks), shows mild Cox-2 immunostaining of lower epithelial layers (score +1) and mild epithelial dysplasia (IHC × 40).

All H&E and IHC results were summarized in table 1.

Table 1: The histopathological and immunohistochemical results of all groups:

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Histopathological results (H&E stain)</th>
<th>The mean percentage of IHC stained cells</th>
<th>Intensity of IHC stain</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Untreated (-ve control)</td>
<td>Normal H&E mucosa.</td>
<td>Negative / low immun-reactivity (Score Zero)</td>
<td>Negative (Score Zero)</td>
</tr>
<tr>
<td>II.7</td>
<td>DMBA for 7 weeks (+ve control)</td>
<td>Severe epithelial dysplasia</td>
<td>Intense immun-reactivity (score +3)</td>
<td>High positive (Score 3)</td>
</tr>
<tr>
<td>II.14</td>
<td>DMBA for 14 weeks (+ve control)</td>
<td>Well to moderate SCC</td>
<td>Intense immun-reactivity (score +3)</td>
<td>High positive (Score 3)</td>
</tr>
<tr>
<td>III.7</td>
<td>TQ 0.001/DMBA for 7 weeks</td>
<td>Moderate epithelial dysplasia</td>
<td>Moderate immun-reactivity (Score +2)</td>
<td>Positive (Score 2)</td>
</tr>
<tr>
<td>III.14</td>
<td>TQ 0.001/DMBA for 14 weeks</td>
<td>Severe dysplasia, CIS and superficial epithelial invasion.</td>
<td>Intense immun-reactivity (Score +3)</td>
<td>Positive (Score 2)</td>
</tr>
<tr>
<td>IV.7</td>
<td>G-NPs/DMBA for 7 weeks</td>
<td>Moderate / severe dysplasia.</td>
<td>Moderate immun-reactivity (Score +2)</td>
<td>Positive (Score 2)</td>
</tr>
<tr>
<td>IV.14</td>
<td>G-NPs/DMBA for 14 weeks</td>
<td>Severe epithelial dysplasia, CIS and superficial epithelial invasion.</td>
<td>Intense immun-reactivity (score +3)</td>
<td>High positive (Score 3)</td>
</tr>
<tr>
<td>V.7</td>
<td>G-NPs-TQ 0.001/DMBA for 7 weeks</td>
<td>Mild epithelial dysplasia.</td>
<td>Mild immun-reactivity (score +1)</td>
<td>Low positive (Score 1)</td>
</tr>
<tr>
<td>V.14</td>
<td>G-NPs-TQ 0.001/DMBA for 14 weeks</td>
<td>Mild / moderate epithelial dysplasia with focal areas of CIS</td>
<td>Moderate immun-reactivity (score +2)</td>
<td>Positive (Score 2)</td>
</tr>
</tbody>
</table>

Statistical results of Cox-2 IHC:
There were statistically significant differences between the negative and positive control groups at both 7 and 14 weeks. Also, there were statistically significant difference between negative control group and group III at both 7 and 14 weeks. Comparable finding was found between groups II and both III and IV at 7 weeks. While at 14 weeks, there was no statistically significant difference between groups II and both group III and IV. There were statistically significant differences between groups II and V at both 7 and 14 weeks, as well as between group V and both III and IV at both 7 and 14 weeks (Tables 2, 3 and figure 6).

Table 2: The statistical analysis of Cox-2 IHC results of all groups at 7 weeks. (Mann-Whitney test results).

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>M&SD</td>
<td>5 ± 1.7</td>
<td>95.19 ± 2.8</td>
<td>37.22 ± 4.2</td>
<td>40.42 ± 8.1</td>
<td>21.91 ± 10.14</td>
</tr>
<tr>
<td>The mean difference (p values)</td>
<td>.050*</td>
<td>.050*</td>
<td>.050*</td>
<td>.050*</td>
<td>.050*</td>
</tr>
</tbody>
</table>

Table 3: The statistical analysis of Cox-2 positive cells IHC results of all groups at 14 weeks (Mann-Whitney test results).

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>M&SD</td>
<td>5 ± 1.7</td>
<td>90.95 ± 14.45</td>
<td>67.62 ± 22.19</td>
<td>80.95 ± 10.82</td>
<td>38.29 ± 2.79</td>
</tr>
<tr>
<td>The mean difference (p values)</td>
<td>.050*</td>
<td>.050*</td>
<td>.050*</td>
<td>.050*</td>
<td>.050*</td>
</tr>
</tbody>
</table>
The present study revealed a higher Cox-2 expression in epithelial dysplasia (ED) than its expression in SCC with no statistically significant difference. Shibata et al. (2005) examined COX-1 and -2 expressions by Western blot and IHC analysis in 65 dysplasias and 50 SCCs. They reported that COX-1 and -2 were higher in dysplasias than in SCCs (30). The reason for this finding was explained by Minter et al. and Sudbo et al. (2003) (15,31). They concluded that COX-2 overexpression was an early event in oral carcinogenesis, where COX-2 expression is correlated to DNA content (DNA aneuploidy) as a genetic risk marker for OC. On the other hand, Renkonen et al. (2002) results revealed that there is no significant difference of COX-2 expression in different grades of epithelial dysplasia (32). This contradicts with Shibata et al.’s study (2005) which reported that COX-2 expression correlated with the histological grade of dysplasias was at the highest level in severe dysplasia (30) as previously reported by Shamma et al. (2000) who considered COX-2 as a sensitive marker for high grade dysplasia of the esophagus (33).

In the present work, COX-2 expression was correlated with the advancement of dysplastic changes as in group III (TQ 0.001/DMBA). This finding indicated that TQ alone had moderate protective effect and this is mostly due to its known poor bioavailability when used topically. Although 14 weeks of combined 0.001mg/kg TQ and DMBA treatment showed lower Cox-2 level of expression than in group II, it was not statistically significant. The H&E finding is consistent with El-Dakhakhny et al. (2009) results who reported that TQ and polythymoquinone (PTQ) can modify the carcinogenic effect of DMBA through minimizing the advancement of dysplastic changes and decreasing the incidence of OSCC (17). In their work, they applied TQ and PTQ intraperitoneally rather than the topical painting of TQ which is used in the present study. It appears clearly that TQ is a promising phytochemical possessing a critical effect on COX-2 inhibition and in turn prostaglandin (PGs) production (6).

It appears that TQ could possess comparable effect, as that of selective COX-2 inhibitors, on tumor growth, metastasis, and the enhancement of the anticancer effects of radiotherapy and chemotherapy (in experimental animals and human models) (13). In group IV (G-NPs/DMBA), Cox-2 IHC results were positively correlated with the histopathologic changes. These observations were comparable to groups given TQ only with DMBA, i.e. G-NPs had comparable effect as TQ against the carcinogenesis process. Although the intensity of IHC stain results of group III (TQ 0.001/DMBA) was better than group IV (G-NPs/DMBA) at 14 weeks, i.e. group III showed positive IHC stain intensity (score 2) while group IV showed high positive stain intensity (score 3) at 14 weeks, the percentage of stained cells was nearly the same, i.e.both showed intense immun-reactivity (score +3). These results indicated that continuous DMBA painting is a stressful stimulus that was hard to be aborted by TQ or G-NPs in the specified dose and route of administration, i.e. the continuous toxic and mutagenic effect of DMBA overcomes the proposed effect of either TQ alone or G-NPs alone.
The best result was observed in group V (G-NPs-TQ 0.001 with DMBA). These results indicated the TQ protective effect facilitated by its loading on G-NPs for intracellular internalization to exert its anti-inflammatory, apoptotic, and free radical scavenging effects. These results could be due to little TQ molecules loaded with GNPs resulted in proper distribution of GNP-TQ molecules on the cell membrane without crowding, and might resulted in proper GNP-TQ cellular uptake in this chemopreventive group. Thereby, G-NPs, in the present work, appear to be a good drug carrier for delivering TQ inside malignant cells.

The anti-inflammatory effect of TQ through Cox-2 inhibition was comparable to the results noted with NSAIDs (as ibuprofen, indomethacin, and aspirin), zileuton, celecoxib, curcumin, and ferulic acid (27,34-36). This protective effect could be through its suppression of chronic inflammatory response resulting from the continuous DMBA painting. Collectively, their anti-inflammatory effect could result in the suppression of both proliferation and invasiveness of tumor cells, as well as the induction of apoptosis (15). The COX-2 activation contributes to carcinogenesis via the direct effects on tumor cells by promoting mitotic activity and the conversion of pro-carcinogens to carcinogens, and indirectly on non-tumoral cells by increasing blood vessels, as well as modulating immune cells. So, its inhibition can prevent cancer (37).

In summary, the current results proved that the topical application of (0.001mg/kg) TQ loaded on G-NPs is effective in delaying and/or regressing the malignant progression along the experimental period (14 weeks). These effects are mostly mediated through the inhibition of chronic inflammation exerted by continuous DMBA painting, i.e. the suppression of the NF-κB-Cox-2 pathway.

CONCLUSION
From the results of this study, it can be concluded that:
1. Topical application of TQ only was not effective in modulating the carcinogenesis process and this is mostly due to its hydrophobic nature and in turn, the weak bioavailability was unable to penetrate the cell membrane.
2. Gold nanoparticles in that model appear to be a good drug-carrier for weak bioavailable agents.
3. Topical application of (0.001 mg/kg) TQ loaded on G-NPs for 7 and 14 weeks was able to reduce Cox-2 expression compared to DMBA-only treated group, and in turn retard/regress the carcinogenesis process due to its anti-inflammatory and free radicle’s scavenging effects.

ACKNOWLEDGMENTS
We would like to express our gratitude to Dr. Mona S. H. Shata, Lecturer of Oral Pathology, Faculty of Dentistry, Suez Canal University, for her suggestions and continuous motivation with scientific knowledge that were beneficial and directive to the final completion of this work. Also, we would like to thank all the staff members of Oral Pathology Department for their tireless efforts.

CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.

REFERENCES
14-Al-Wafai RJ. Nigella sativa and thymoquinone suppress cyclooxygenase-2 and oxidative stress in

http://www.springer.com/series/1174

