Sakr, H., Shaaban, A., Aly, T., Elshiekh, S. (2021). CLINICAL EVALUATION OF USING CORTICAL LAMINA XENOGRAFT IN RECONSTRUCTION OF ORBITAL FLOOR. Alexandria Dental Journal, 46(Issue 2), 8-12. doi: 10.21608/adjalexu.2020.88451
Haitham H. Sakr; Ahmed M. Shaaban; Tarek M. Aly; Samraa Elshiekh. "CLINICAL EVALUATION OF USING CORTICAL LAMINA XENOGRAFT IN RECONSTRUCTION OF ORBITAL FLOOR". Alexandria Dental Journal, 46, Issue 2, 2021, 8-12. doi: 10.21608/adjalexu.2020.88451
Sakr, H., Shaaban, A., Aly, T., Elshiekh, S. (2021). 'CLINICAL EVALUATION OF USING CORTICAL LAMINA XENOGRAFT IN RECONSTRUCTION OF ORBITAL FLOOR', Alexandria Dental Journal, 46(Issue 2), pp. 8-12. doi: 10.21608/adjalexu.2020.88451
Sakr, H., Shaaban, A., Aly, T., Elshiekh, S. CLINICAL EVALUATION OF USING CORTICAL LAMINA XENOGRAFT IN RECONSTRUCTION OF ORBITAL FLOOR. Alexandria Dental Journal, 2021; 46(Issue 2): 8-12. doi: 10.21608/adjalexu.2020.88451
CLINICAL EVALUATION OF USING CORTICAL LAMINA XENOGRAFT IN RECONSTRUCTION OF ORBITAL FLOOR
1Assistant lecturer of Oral and maxillofacial surgery, Faculty of Dentistry, Pharos University, Alexandria, Egypt.
2Professor of Oral and maxillofacial surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
Abstract
Background: The orbital floor is one of the most frequently injured areas during facial trauma. Their proper treatment is crucial for prevention of orbital complications as diplopia, limitation of ocular motility and enophthalmos. Cortical lamina is a collagenated cortical bone of heterologous origin that is used in grafting of non-load-bearing areas. Objective: To evaluate clinically the use of cortical lamina in the reconstruction of orbital floor defects. Materials and Methods: Ten patients with orbital floor defects less than 2cm were associated with one or more of the following complications; binocular diplopia, enophthalmos, limitation of ocular motility or infra orbital nerve dysfunction, were indicated for orbital reconstruction using cortical lamina xenograft. The follow-up schedule was 1week and 1, 3, 6 months postoperatively. Results: Orbital complications had been resolved in all patients. Only infra orbital nerve dysfunction continued in 7 patients where 3 of patients recovered after 3 months and the other 4 have recovered after 6 months. Conclusions: Cortical lamina xenograft is a good alternative for the reconstruction of orbital floor defects less than 2cm due to its plasticity and biocompatibility without any donor site morbidity.
1. Yavuzer R, Tuncer S, Başterzi Y, Işik I, Sari A, Latifoğlu O. Reconstruction of orbital floor fracture using solvent-preserved bone graft. Plastic and Reconstructive Surgery 2004; 113(1):34-44.
2. Sakakibara S, Hashikawa K, Terashi H, Tahara S. Reconstruction of the orbital floor with sheets of autogenous iliac cancellous bone. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons 2009; 67(5):957-61.
3. Piombino P, Spinzia A, Abbate V, Bonavolontà P, Orabona GD, Califano L. Reconstruction of small orbital floor fractures with resorbable collagen membranes. The Journal of Craniofacial Surgery 2013; 24(2):571-4.
4. Baino F. Biomaterials and implants for orbital floor repair. Acta Biomaterialia 2011; 7(9):3248-66.
5. Tabrizi R, Ozkan TB, Mohammadinejad C, Minaee N. Orbital floor reconstruction. The Journal of Craniofacial Surgery 2010; 21(4):1142-6.
6. Yeşiloğlu N, Sirinoğlu H, Sarici M, Temiz G, Filinte GT. A New Option for the Reconstruction of Orbital Floor Defects: The Olecranon Bone Graft. Annals of Plastic Surgery 2015; 75(4):401-6.
7. Nowinski D, Messo E, Hedlund A. Treatment of orbital fractures: evaluation of surgical techniques and materials for reconstruction. The Journal of Craniofacial Surgery 2010; 21(4):1033-7.
8. Mok D, Lessard L, Cordoba C, Harris PG, Nikolis A, Mok D, et al. A review of materials currently used in orbital floor reconstruction. Canadian Journal of Plastic Surgery 2004; 12(3):134-40.
9. Prichard V, Thadani R, Kalb E. Rapidly progressive dementia in a patient who received a cadaveric dura mater graft. JAMA 1987;257:1036.
10. Bratton M, Durairaj D. Orbital implants for fracture repair. Curr Opin Ophthalmol 2011;22(5):400–6.
11. Webster k. Orbital floor repair with lyophilized porcine dermis. Oral Surg Oral Med Oral pathology.1988;65:161-4.
12. Schlickerwie W, Paul C. Experimentelle Untersuchungen Zum Knochersatz mit mit bovinem Apatit. Hefte zu Unfallsheilkunde 1991; 216:59–69.
13. Fukuta K, Har-Shai Y, Collares V, Lichten B, Jackson T. Comparison of bovine mineral particles with porous hydroxyapatite granulaes and cranial bone dust in the reconstruction of full thickness skull defects. J Craniofac Surg 1992; 3:25–29.
14. Klinge B, Alberius P, Isaksson S, Jönsson J. Osseous response to implanted natural bone mineral and synthetic hydroxyapatite ceramics in the repair of experimental skull bone defects. J Oral Maxillofac Surg 1992; 80:241– 249.
15. Chowdhury S, Saprubrig B,Awasthi P. Clinico-radiographic evaluation of xenografts in maxillofacial surgery medical journal armed forces india volume 57, issue 4, october 2001, pages 281-284.
16. Borie C, Cramer V, Phan-Thanh L, Vaillant C, Bequet L, Makowka L, et al. Microbiological hazards related to xenotransplantation of porcine organs into man. Infect Control HospEpidemiol. 1998;19(5):355-65.
17. Costa F, Robiony M, Politi M. Stability of Le Fort I osteotomy in maxillary advancement: Review of the literature. Int J Adult Orthod Orthognath Surg1999;14(3):207-13.
18. Bhatnagar S, Khare P. Reconstruction of orbital floor fracture using porous polyethylene mesh.Int J Med Res Rev 2014; 2: 1.
19. Mok D, Lessard L, Cordoba C, Harris G, Nikolis A. A review of materials currently used in orbital floor reconstruction.Can J Plast Surg. 2004; 12:134.
20. Burnstine A. Clinical recommendations for repair of isolated orbital floor fractures. Ophthalmology 2002; 109:1207-10.
21. Nowinski D, Messo E, Hedlund A. Treatment of orbital fractures: evaluation of surgical techniques and materials for reconstruction. J Craniofac Surg. 2010;21:1033Y1037.
22. Kolmas J, Szwaja M, Kolodziejski W: Solid-state NMR and IR characterization of inorganic commercial xenogeneic biomaterials used as bone substitutes. J Pharm Biomed Anal 61: 136e141, 2012.
23. Timothy A, Golden A. Orbital Anatomy for the Surgeon. Oral Maxillofac Surg Clin North Am. 2012 Nov; 24(4): 525–36.
24. Foletti M, Martinez V, Haen P, Godio-Raboutet Y, Guyot L, Thollon L. Finite element analysis of the human orbit. Behavior of titanium mesh for orbital floor reconstruction in case of trauma recurrence. J Stomatol Oral Maxillofac Surg. 2019 Apr;120(2):91-94.
25. Andreiotelli M, Wenz J, Kohal J: Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res 20(Suppl. 4): 32e47, 2009.
26. Rinna C, Ungari , Saltarel A, Cassoni A, Reale G. Orbital Floor Restoration. Journal of Craniofacial Surgery. 16(6):968-972, November 2005.
27. Nappe E, Rezu C, Montecinos A, Donoso A, Vergara J, Martinez B. Histological comparison of an allograft, a xenograft and alloplastic graft as bone substitute materials. J Osseointegr 2016;8(2):20-26.
28. Dubois L, Steenen A, Gooris J, Mourits P, Becking G. Controversies in orbital reconstruction—II. Timing of orbital reconstruction in trauma: a systematic review. Int J Oral Maxillofac Surg 2015;44:433–40.
29. Haapanen A , Thorén H, Apajalahti S , SuominenA , Snäll J. Neurosensory recovery after trauma to the orbital floor: a prospective trial with dexamethasone. British Journal of Oral and Maxillofacial Surgery 56 (2018) 810–13.
30. Wang S, XiaoJ, Liu L, Lin Y, Li X, Tang W et al. Orbital floor reconstruction: a retrospective study of 21 cases. OralSurg Oral Med Oral Pathol Oral Radiol Endod 2008;106:324-30.